Hydrogeologische Standortbeurteilung Bauschuttrecyclinganlage Werner Wex, Aresing

Flur.-Nr. 760, 761, Gemarkung Aresing Projektnr. 18 428 31.01.2020

Geotechnisches Büro – K. Deller Schweigerstr. 17, 81541 München, Tel. 089/45019970, Fax 089/679733165

Geotechnisches Büro – K. Deller – Schweigerstr. 17 – 81541 München Hydrogeologische Standortbeurteilung, Lagerfläche Aresing

Inhaltsverzeichnis

- 1. Vorhaben, Allgemeines
- 2. Topographie, geologische und hydrogeologische Situation
- 3. Bohrungen und Messstellenausbau
- 4. Wasserwirtschaftliche Kriterien
- 5. Ermittlung der Schutzfunktion der Deckschichten
- 6. Gesamtbewertung

Anlage

- 1.1 Übersichtslageplan
- 1.2 Lageplan Pegel
- 2 Bohrprofile
- 3 Ausbaupläne Fa. Engel
- 4 Stichtagsmessung mit Fließrichtung
- 5 Pegelstände bestehende RC-Anlage

1. Vorhaben, Allgemeines

Die Gemeinde Aresing plant an der Ziegeleistraße auf den Flurstücken 760 und 761 die Erichtung eines Lagerplatzes für Abbruchmaterial und Erdaushub. Bauschutt soll dort gebrochen und zwischengelagert werden. Der Untergrund des Lagerplatzes wird dazu eingeebnet und befestigt.

Derzeit wird bereits weiter südlich an der Ziegeleistraße von der Firma Wex eine Bauschutt-Recyclinganlage betrieben. In dieser Anlage werden nur Abfälle angenommen, welche die Richtwerte RW 1 des Leitfadens "Anforderungen an die Verwertung von Recyclingbaustoffen in technischen Bauwerken" vom 15.6.2005 einhalten. Diese Anlage soll rückgebaut und durch die neu errichtete ersetzt werden. Im Übersichtlageplan der Anlage 1.1 sind die bestehende und die geplante Anlage dargestellt.

Zur Prüfung der grundsätzlichen Standorteignung und wasserwirtschaftlichen Bewertung ist eine hydrogeologische Standortbeurteilung notwendig.

Die Firma Engel Bohrtechnik GmbH & Co. KG wurde von Herrn Werner Wex mit der Erichtung der notwendigen Grundwassermessstellen beauftragt, mit der hydrogeologischen Standortbewertung wurde das Geotechnische Büro Klaus Deller beauftragt.

2. Topographie, geologische und hydrogeologische Situation

Das Vorhaben liegt an einem etwa Ost-West verlaufenden Hügelrücken. Das Gelände steigt von Süd nach Nord etwa um 12 m an. Gemäß der digitalen Geologischen Karte 1:25.000 aus dem Umweltatlas Bayern liegen auf dem Grundstück quartäre Schwemmsande über tertiären Sedimenten der Oberen Süßwassermolasse. Die tertiären Sedimente in dieser Gegend sind in der Regel als Sande ausgebildet. Die quartären Schwemmsande enstanden aus der Umlagerung der tertiären Sande. Die Schwemmsande unterscheiden sich durch eine geringere Lagerungsdichte und einen höheren Feinkornanteil von den tertiären Sanden.

Die Grundwasserfließrichtung ist gemäß der hydrogeologischen Karte 1: 100.000 nach Norden. Jedoch wurde davon abweichend bei der ca. 200 m südöstlich liegenden und derzeitig betriebenen Recyclinganlage eine Fließrichtung nach Ost-Nordost festgestellt. In der nachfolgenden Tabelle sind die hydrogeologischen Parameter angegeben:

Tabelle 1: Hydrogeologie

Grundwasserleiter	Sande
Geländehöhe	436 m NN bis 447 m NN
Grundwasserhöhe	427 m NN bis 428 m NN
Grundwasserflurabstand	8 m bis 20 m
Durchlässigkeit des Aquifers	1 x 10 ⁻⁴ bis 1 x 10 ⁻⁷ m/s
Grundwasserneubildung	175 - 200 mm/a

3. Bohrungen und Messstellenausbau

Durch die Engel Bohrtechnik GmbH & Co. KG wurden vier Grundwassermessstellen im Spülbohrverfahren errichtet. Die Bohrarbeiten fanden vom 08.01.20 bis zum 15.01.20 statt. Die Lage dieser Pegel kann dem Lageplan der Anlage 1.2 entnommen werden. Die Aufnahme erfolgte meterweise, da eine differenzierte Beurteilung der Schichten beim Spülbohrverfahren nicht möglich ist. Die Ergebnisse sind in der nachfolgenden Tabelle wiedergegeben:

Tabelle 2: Angetroffene Böden

Pegel 1

Tiefe	Bodenart
0 - 1 m	Quartär: Sand, stark schluffig
1 - 5 m	Tertiär: Fein- bis Mittelsand, schwach grobsandig, schwach schluffig
5 - 7 m	Tertiär: Fein- bis Mittelsand, schwach schluffig
7 - 9 m	Tertiär: Fein- bis Mittelsand, schwach grobsandig, schwach schluffig
9 - 17 m	Tertiär: Sand

Grundwasser am 16.01.20 bei 8,92 m u GOK eingespiegelt

Pegel 2

Tiefe	Bodenart	
0 - 3 m	Tertiär: Schluff, sandig	
3 - 5 m	Tertiär: Sand, stark schluffig	
5 - 7 m	Tertiär: Schluff, stark sandig	
7 - 17 m	Tertiär: Sand, schwach schluffig	
17 - 19 m	Tertiär: Sand	
19 - 27 m	Tertiär: Fein- bis Mittelsand, schwach schluffig	

Grundwasser am 16.01.20 bei 17,70 m u GOK eingespiegelt

Pegel 3

Bodenart
Auffüllung: Kies, schluffig sandig, ca. 10 % Ziegelbruch
Quartär: Sand, schluffig, schwach kiesig
Tertiär: Fein- bis Mittelkies, sandig
Tertiär: Ton, sandig, schwach feinkiesig, Lagen Sand
Tertiär: Sand, schwach feinkiesig
Tertiär: Sand
Tertiär: Sand, schwach feinkiesig
Tertiär: Sand
Tertiär: Fein- bis Mittelsand, schwach schluffig
Tertiär: Sand, schwach schluffig

Grundwasser am 16.01.20 bei 19,53 m u GOK eingespiegelt

Pegel 4

Tiefe	Bodenart	
0 - 4 m	Tertiär: Schluff, stark sandig	
4 - 7 m	Tertiär: Sand, schwach schluffig	
7 - 11 m	Tertiär: Sand	
11 - 12 m	Tertiär: Sand, schwach schluffig	
12 - 16 m	Tertiär: Sand	
16 - 17 m	Tertiär: Fein- bis Mittelsand, schwach schluffig	
17 - 21 m	Tertiär: Sand, schwach schluffig	
21 - 22 m	Tertiär: Ton, sandig	

Grundwasser am 16.01.20 bei 7,12 m u GOK eingespiegelt

Try drog oblogication of an about source individual in a fundament

Tertiäre Sande bilden den Grundwasserleiter. Ein Stauhorizont wurde bei Pegel 4 bei 21 m unter Gelände (ca. 414 m NN) erbohrt.

Die Bohrprofile sind als Anlage 2 aufgeführt, die Ausbauplände der Fa. Engel als Anlage 3.

Die Pegel wurden am 16.01.20 relativ zueinander nivelliert sowie eine Stichtagsmessung vorgenommen. Eine weitere Stichtagsmessung erfolgte am 27.01.20. Die folgenden Geländehöhen wurden ermittelt:

Tabelle 3: Bezugshöhen

Pegel	Pegel 1	Pegel 2	Pegel 3	Pegel 4
Höhe POK relativ	100,25 m	109,21 m	109,40 m	99,53 m
Höhe Gelände relativ	100,00 m	108,50 m	110,00 m	98,27 m

Die Ergebnisse der Stichtagsmessungen sind in der folgenden Tabelle aufgelistet:

Tabelle 4: Grundwasserstände

Pegel	Pegel 1	Pegel 2	Pegel 3	Pegel 4
Höhe POK relativ	100, 25 m	109,21 m	109,40 m	99,53 m
Grundwasser,16.01.20, u.POK	9,17 m	18,41 m	18,93 m	8,39 m
Grundwasser, 16.01.20, relativ	91,08 m	90,80 m	90,47 m	91,14 m
Grundwasser, 27.01.20, u.POK	9,18 m	18,41 m	18,93 m	8,92 m
Grundwasser, 27.01.20, relativ	91,07 m	90,80 m	90,47 m	90,61 m

Der Wasserstand in Pegel 4 vom 16.01.20 weicht deutlich von der Messung am 27.01.20 ab, bei den anderen Pegeln sind die Werte gleichbleibend. Offensichtlich war der Pegel 4 am 16.01.20 noch durch die Bohrarbeiten vom Vortag beeinflusst. Für die Ermittlung der Fließrichtung werden deshalb die Stichtagswerte vom 27.01.20 herangezogen. Daraus ergibt sich eine Fließrichtung nach Osten (abweichend von der Hydrogeologischen Karte) in Richtung zur Weilach und ein Gefälle von 0,7 % (siehe Anlage 4).

4. Wasserwirtschaftliche Kriterien

Das Vorhaben liegt außerhalb von Trinkwasserschutzgebieten. Die nächst gelegenen Trinkwasserschutzgebiete zwischen Aresing und Schrobenhausen befinden sich ca. 1,5 km nördlich. Bei einem Abstrom von der Lagerfläche nach Osten, liegen diese Gebiete nicht im Abstrombereich.

Das Gelände liegt westlich der Weilach oberhalb des Überschwemmungsgebietes im Weilachtal. Die Weilach bidet die Vorflut.

Geotechnisches Büro – K. Deller – Schweigerstr. 17 – 81541 München Hydrogeologische Standortbeurteilung, Lagerfläche Aresing

5. Ermittlung der Schutzfunktion der Deckschichten

Die geplante Lagerfläche fällt gemäß dem vorliegenden Plan von Landschaftarchitekt Thomas Mutter leicht nach Süd ab. Die mittlere Geländehöhe liegt bei 438,6 m NN. Aus der Vermessung des Grundstücks im gleichen Plan lässt sich für den Pegel 3 in der Nordostecke des Flurgrundstückes eine Geländehöhe von ca. 446,8 m NN abschätzen. Berechnet aus der relativen Vermessung ergibt dies für Pegel 4 eine Pegelhöhe von 436,3 m NN und einen Wasserstand von 427,4 m NN.

Zu den Schwankungen der Grundwasserstände können die Pegelstände aus der bestehenden RC-Anlage im Süden herangezogen werden (siehe Anlage 5). Die Wasserstände im regenreichen Juni 2013 als bisherige Höchststände liegen bei den einzelnen Pegeln um 39 cm bis 52 cm höher als die Stände im Dezember 2019. Für die Berechnung der Schutzfunktion der Grundwasserüberdeckung wird deshalb der Wasserstand 428,0 m NN herangezogen und ein vereichfachtes Profil mit einer Überdeckung von 3 m sandigem Schluff über schwach schluffigem Sand (Vergleich zu Profil Pegel 4).

Die Schutzfunktion der Deckschichten nach Hölting gemäß Leitfaden zur Verfüllung von Gruben und Brüchen sowie Tagebauen berechnet sich damit wie folgt:

$$S = (\sum G_i \times m_i) \times W$$

S: Gesamtschutzfunktion

Gi: Gesteinsspezifische Schutzfunktion

m_i: Mächtigkeit der Schicht

W: Faktor der Sickerwasserrate

 $S = (3 \times 120 + 7.5 \times 50) \times 1.5 = 1102.5$

Dies entspricht einer mittleren Gesamtschutzfunktion der Deckschichten für das Vorhaben.

Geotechnisches Büro – K. Deller – Schweigerstr. 17 – 81541 München Hydrogeologische Standortbeurteilung, Lagerfläche Aresing

6. Gesamtbewertung

Für den Standort ergibt sich aus den wasserwirtschaftlichen Kriterien und der Schutzfunktion der Deckschichten eine Einstufung des Standortes als mittel empfindlich.

An der bestehenden Recyclinganlage wurden erhöhte Gehalte an Sulfat, Calcium und Magnesium im Abstrom festgestellt. Im Vergleich zu dem aktuell untersuchten Standort liegt die bestehende Anlage wesentlich ungünstiger. Der Flurabstand zum Grundwasser beträgt dort nur ca. 3 m gegenüber einem Abstand von 9 - 11 m bei der geplanten Anlage. Damit liegt an der nun geplanten Anlage eine wesentlich höhere Schutzfunktion der Deckschichten vor. Die Gesamtschutzfunktion der Deckschichten wurde bei der bestehenden Anlage mit 150 Punkten als sehr gering berechnet (Hydrogeologische Beurteilung des Standortes vom 17.08.2011, Stanislaus Gamperl), wärend sie bei dem geplanten Vorhaben mit 1102 Punkten als mittlere Schutzfunktion berechnet wird. Deshalb ist die Besorgnis von Stoffeinträgen durch die neue Anlage sehr gering.

Zur Vermeidung von Stoffeinträgen ist bei den Mulden zur Versickerung von Niederschlagswasser gemäß DWA-A 138 auf eine Oberbodenschicht von mindestens 20 cm Stärke zu achten um eine Verbesserung des Stoffbindevermögens zu erzielen.

München, den 31.01.2020

71. R/h

K. Deller